# **TIC Titanium Metal Powder Filter Cartridge**

Cobetter **TIC**<sup>®</sup> Titanium Metal Powder Filter Cartridges composed of high-purity industrial-grade titanium powder (99.4%) with all elements sintered at high temperatures. Its features include anti-chemical corrosion, oxidation and high temperature resistance, and long service life. As it is a low viscosity liquid filter, this filter results in good solid-liquid separation efficiency.

This filter is mainly used as a chemical filter to remove ozone-depleting substance and for the removal of carbon dioxide in food, pharmaceutical, and water treatment applications.

### **Features and Benefits**

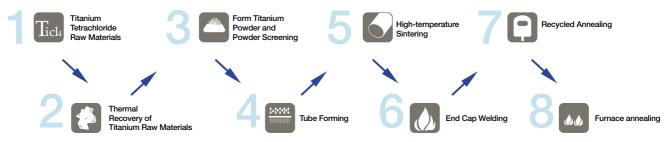
- High-purity titanium construction
- · Anti-corrosive; high temperature and oxidation resistant
- Uniform structure with narrow pore size distribution and high filtration efficiency
- No free-falling particles
- High porosity, low filtration resistance and high filtration
  efficiency
- Good compatibility with human tissue and blood due to its
  non-toxic and non-magnetic nature

### Materials of Construction(Five Layers)

| Filter Layer       | High-purity Titanium    |
|--------------------|-------------------------|
| End Cap            | High-purity Titanium    |
| Screw Cap          | 304 Stainless Steel     |
| Reinforcing Layers | 304/316 Stainless Steel |

#### Nominal Dimensions

| Diameters                         | 60mm                       |
|-----------------------------------|----------------------------|
| Additional Diameter Specification | ons Available Upon Request |


# Configurations

Double Open-End (DOE) Single Open-End (SOE)

## **Operating Conditions**

| Max. Differential Pressure | 3.0 bar / 21°C (forward flow) |
|----------------------------|-------------------------------|
| Max. Operating Temperature | 280°C                         |

### Manufacturing Process of TIC Titanium Metal Powder Filter Cartridges





#### **Parameters**

| Code | <b>Liquid Pore</b><br><b>Size</b> (µm) | <b>Removal</b><br>Ratings(µm) | Pore<br>Efficiency | Absolute Removal<br>Rating (µm) @ | Average Air<br>Permeability<br>(L/dm²min) | Flow Rate<br>(m³/h) |
|------|----------------------------------------|-------------------------------|--------------------|-----------------------------------|-------------------------------------------|---------------------|
| 1    | 0.45                                   | 32                            |                    | 6                                 | 0.02                                      | 0.18                |
| 2    | 1.0                                    | 25                            | _                  | 10                                | 0.1                                       | 0.27                |
| З    | 3.0                                    | 6.1                           |                    | 20                                | 0.5                                       | 0.33                |
| 4    | 5.0                                    | 3.2                           |                    | 30                                | 1.1                                       | 1.32                |
| 5    | 10                                     | 3.0                           | - 30-50%           | 50                                | 2.7                                       | 4.2                 |
| 6    | 20                                     | 2.8                           | 30-30%             | 70                                | 5.6                                       | 5.6                 |
| 7    | 30                                     | -                             | _                  | -                                 | 6.5                                       | -                   |
| 8    | 50                                     | -                             | _                  | -                                 | 10.5                                      | -                   |
| 9    | 80                                     | -                             | _                  | -                                 | 14.9                                      | -                   |
| 10   | 100                                    | -                             | _                  | -                                 | 18                                        | -                   |
| 11   | 120                                    | -                             |                    | -                                 | 20                                        | -                   |

### Length and Area®

| Length           | Filtration Area      |
|------------------|----------------------|
| 5 in. (125 mm)   | 0.024 m <sup>2</sup> |
| 10 in. (300 mm)  | 0.056 m <sup>2</sup> |
| 20 in. (500 mm)  | 0.094 m <sup>2</sup> |
| 30 in. (750 mm)  | 0.141 m <sup>2</sup> |
| 40 in. (1000 mm) | 0.188 m <sup>2</sup> |

Length and Other Sizes Are Customizable

Tested Filter Diameter is 65mm

#### Bubble Point Testing

Dubler form resumption
 Tested according to GB/T8786; Differential Pressure of 200Pa (in air)
 Liquid Viscosity of 1 CP-S; diameter of 65mm; length of 10inches; pressure of 1.0bar

#### **Particle Efficiency**

| Particle Range | 0.45µm   | 1 µm     | 3 µm     | 5 µm     | 10 µm    |
|----------------|----------|----------|----------|----------|----------|
| ≥2µm           | 99.916%  | 99.895%  | 99.769%  | 82.546%  | 82.371%  |
| ≥5µm           | 99.974%  | 99.965%  | 99.910%  | 96.283%  | 96.079%  |
| ≥10µm          | 99.990%  | 99.986%  | 99.973%  | 98.875%  | 98.902%  |
| ≥12µm          | 99.987%  | 99.987%  | 99.986%  | 98.998%  | 98.982%  |
| ≥25µm          | 100.000% | 100.000% | 100.000% | 99.996%  | 99.916%  |
| ≥35µm          | 100.000% | 100.000% | 100.000% | 100.000% | 99.966%  |
| ≥50µm          | 100.000% | 100.000% | 100.000% | 100.000% | 100.000% |

# **Titanium Filter Efficiency Test** 120.000% Eiltration Efficiency 80.000% 60.000% 40.000% 20.000% Titanium Bar 0.45 µm Titanium Bar 1 µm Titanium Bar 3 µm Titanium Bar 3 µm Titanium Bar 5 µm Titanium Bar 10µm 20.000% 0.000% ≥2µm

#### **Ordering Information**

| TIC | Remova                                                                          | l Ratings                                                                                               | End Cap                                                         | Nominal Length                                        | Dian                                 | neter                                             | Seal Material                     | -F |
|-----|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|---------------------------------------------------|-----------------------------------|----|
|     | 0045=0.45µm<br>0100=1.0µm<br>0300=3.0µm<br>0500=5.0µm<br>1000=10µm<br>2000=20µm | <b>3000</b> =30μm<br><b>5000</b> =50μm<br><b>8000</b> =80μm<br><b>100H</b> =100μm<br><b>120H</b> =120μm | DOE =Double open en<br>TC =222/Flat<br>SC =226/Flat<br>L =Screw | <b>10</b> = 10"<br><b>20</b> = 20"<br><b>30</b> = 30" | <b>D30</b> =30mm<br><b>D40</b> =40mm | D70 =70mm<br>D75 =75mm<br>D80 =80mm<br>D120 =120m | <b>E</b> =EPDM<br><b>V</b> =Viton |    |

#### **Cleaning Methods**

Physical Cleaning Methods: Reverse-Flow by Clean Water; Reverse-Blow by Clear Air and Ultrasonic Wave Chemical Cleaning Methods: Use Cleaning Agent Such As Diluted Acid, Diluted Alkalis, Oxidizer, and Surfactant

| Contamination Materials                                               | General Cleaning Method Procedures                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decarburization in Pharmaceutical<br>and Chemical Industries          | Reverse-blow and reverse-flow used more frequently; ultrasonic wave cleaning used when necessary                                                                                                                                                                                                              |
| Non -Water Soluble Salts and Oxides<br>in the Pharmaceutical Industry | Soak in 5% Concentration of Nitric Acid Solution                                                                                                                                                                                                                                                              |
| Original Liquid Filtration                                            | Choose the correct cleaning methods as per the chemical properties of the contamination material; The Ultrasonic Wave<br>Cleaning can be combined to use when necessary                                                                                                                                       |
| Chemical Cleaning Methods                                             | Detailed Procedures                                                                                                                                                                                                                                                                                           |
| Alkaline Cleaning                                                     | Alkaline Cleaning Soak filter in 3-5% Concentration of AR grade NaOH Solution for 30-60 minutes; solution temperature is 40°C.<br>Flush the soaked filter inside, out with DI water or WFI water until the flushed solution turns neutral, and then test its conductivity.<br>Dry with Pure Air $\geq$ 0.4Mpa |
| Acid Cleaning                                                         | Soak it in the 5% Concentration of Nitric Acid Solution for at least 8 hours; solution temperature is 40°C. Flush the soaked filter inside, out with DI water or WFI water until the flushed solution turns neutral, and then test its conductivity. Dry with Pure Air $\geq$ 0.4Mpa                          |
| Original Liquid Filtration                                            | Clean filter with surfactant caused by contamination with Organic Pollution ( high concentration of Citric Acid recommended for Food and Beverage Applications)                                                                                                                                               |



Food & Beverage Industry